《通分》教学设计

时间:2024-07-13 20:17:38
《通分》教学设计

《通分》教学设计

作为一名优秀的教育工作者,时常要开展教学设计的准备工作,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。如何把教学设计做到重点突出呢?下面是小编整理的《通分》教学设计,欢迎大家分享。

《通分》教学设计1

教学内容:

人教版《义务教育课程标准实验教科书数学》五年级下册93-94页的内容。

教学目标:

1. 通过教学,使学生掌握比较分数大小的方法,能准确快速地比较各类分数的大小,理解通分的意义和作用。

2. 让学生经历观察、分析、合作、交流、归纳等一系列数学活动,能运用多种策略解决问题,并使策略最优化。

3. 渗透转化的数学思想,提高学生的数学素养;渗透爱国情感教育。

教材分析:

通分是义务教育课程标准实验教科书五年级下册第93至94页的内容。这部分教材以分数的大小比较为线索,由特殊到一般,在解决问题的同时教学通分。它是在学生已经掌握了分数的基本性质和求几个数的最小公倍数的基础上进行教学的,是分数基本性质的直接应用,在分数加减法中常常用到。因此通分是分数四则运算的重要基础,是比较异分母分数大小和计算异分母分数加减法的重要步骤,所以必须使学生切实掌握好这部分内容。

在本节课教学中我力求渗透数学转化思想方法、抽象概括方法、比较法、观察法等。

学情分析:

学生在三年级上学期已经初步学习了比较分子是1的分数,以及同分母分数的大小,所以在学习这部分内容时难度不大,重点让学生讲解判断大小的理由并及时归纳总结。至于异分母分数比较大小,一部分同学其实已经知道利用分数的基本性质进行比较,那么教师就可以利用学生的这一成果引入通分,再通过自学环节,顺理成章的让学生转入本节的重点学习中。

教学重点:理解通分的意义,掌握通分的方法。

教学难点:异分母分数的比较

教具准备:课件一套

教学过程:

课前调查:

了解学生对冬奥会的关注情况,适当进行补充然后请学生单选或多选温哥华冬奥会上令你感动的画面。

【评析:体育最能激发人的爱国热情,这样的课前调查,既为本节的教学提供了素材,又渗透了对学生的情感教育。】

(一)激趣导入,提出问题。

1、由温哥华冬奥会的举办,引出调查的信息并出示信息。

师:同学们,20xx年第21届温哥华冬奥会中国金牌榜首次进入世界前七!冬奥期间,每一个精彩瞬间都会激起我们的心灵震颤,(出示课件:王濛叩谢恩师李琰、周洋以一敌七摘取1500米桂冠、申赵18年圆梦登顶、中国短道接力金牌失而复得)。

2、让学生根据统计的结果提出数学问题。

【评析:情境的创设基于学生自己调查统计的结果,不但体现了数学来源于生活,而且可以激发学生的学习兴趣。】

(二)解决问题,探究新知。

1、独立解决问题

【评析:学生独立思考是一种良好的思维品质。在教学中,把学习的主动权还给学生,让他们用自己的思维方式主动、自由地去探究,去发现,亲自体验获得知识的快乐。】

2、合作交流

在四人小组内交流自己已解决的问题,或讨论有疑问的地方。

【评析:这个环节可以实现智慧的交流、思想的碰撞、思维方式的互补,同时培养了学生的合作意识、合作能力。让学生在参与的过程中体验学习的快乐,获得心智的发展。】

3、汇报展示

⑴ 同分母分数大小的比较

①总结方法;

② 练习巩固: ○ ○ ○

⑵ 异分母分数比较大小。

①分子相同的异分母分数比较;

②分子和分母各不相同的异分母分数比较;

【评析:课堂中学生参与到实践过程中,主动寻求多种解题方法,迸出创新的火花,使学习真正成为人的主体性、能动性不断生成、发展和张扬的过程。同时这样处理环节也很好的突破了难点。】

4.教学通分。

⑴ 观察方法,揭示课题。

师指着利用分数基本性质解题做法问:仔细观察这位同学的做法,你有什么发现?教师追问:“转化后分数的大小变了吗?你的依据是什么?”这时教师揭示:像这位同学的方法,就叫做通分(板书课题)。

⑵ 阅读教材,理解意义。

阅读课本93--94页,把你认为的重点或有疑问的地方用红笔标注一下。

⑶ 交流收获,掌握方法。

看书后,先解决有疑问的地方,之后让学生用自己的语言说说什么叫通分,通分的方法,学习通分有什么作用等等。

【评析:这样做学生不仅触到新知的“脉”,还能寻到新知的“源”,不仅知道了学什么,还知道为什么要学,不仅激活了学生的思维,还有利于学生把知识转化为能力。这样就突出了重点。】

(三) 巩固练习,拓展提升。。

1、基本练习:比较下面分数的大小:

和 和

2、拓展提升。

同学们进行100米赛跑,丁丁用了 分,明明用了 分,谁的

成绩好一些?

3、随机练习黑板上的其余问题。

【评析:通过从基础练到拓展练,把数学放到了更广阔的生活环境中,让学生用所学的知识来解决生活当中的实际问题,培养学生的应用意识。】

结束语:同学们,我们虽不见得有冰雪健儿们那样的天赋及机会,能够在国际赛场上为国争光,但是我们每个人,却可以被他们的某种精神所激励,然后在我们各自的人生舞台上,去赢得属于我们自己的金牌!

板书设计:

通 分

大 小 不 变

异分母分数 同分母分数

转 化 (公分母)

公倍数

把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

设计思路:

在这节课上,我最初的设计是依据教材,按照教材上的指点,重点引导学生通过合作、探究、交流等活动来比较异分母分数的大小。可是,课前的调查和研究表明,无论是学生还是身为教师的我,都已经不能够将学习和教学的.关注点仅限于课本了。有了这样的感觉,我就不能够再默守陈规、按部就班的进行原定预设计划了。因此我决定走出教材、了解学生,真正实现“用教材”“备学生”这一高度上来设计这节课。针对教材的编排特点和学生的实际情况,我在教材提供的素材基础上进行了加工,在课前进行了同学们喜欢的体育运动进而进行冬奥会深刻画面的调查,并将这一调查结果引入课堂,学生积极的进行观察、提问、思考、交流等各项活动,在情趣交融的活动中实现教学目标,在轻松愉快的情境中理解、掌握数学知识,收到了良好的教学效果,同时由于课堂上学生是兵教兵,这样充分发挥了学生的主体性,也培养了学生的 ……此处隐藏5112个字……等的分数吗?

指名说,并说出思考过程。指名口答时再说说这么做的依据是什么? 过渡:今天我们将继续运用分数的基本性质来学习新的知识。

二、自主探索,建构新知

1.教学例题

(1) 出示例题14:把3/4和5/6改写成分母相同而大小不变的分数。 指名读题,师:你觉得题目中有哪些要求?(分母相同而大小不变) 你会运用以前学过的知识进行改写吗?试试看。

(2)学生在自己本子上独立尝试完成,师巡视,发现不同方法者请板演。

(3)讲评。

师:我们首先来看看第一位同学的,他把它们改写成分母是12的分数,3/4的分母4改写成12要乘3,分子也同时乘3等于9/12,5/6的分母6改写成12要乘2,分子5同时乘2等于10/12,这两个分数的分母相同,它们的分数大小有没有变?为什么?符合题目要求吗?

我们再来看看第二位同学的,把它们改写成分母是24的分数,3/4的分子分母同时乘6等于18/24,5/6的分子分母同时乘4等于20/24,它们的分数大小有没有变?为什么?符合题目要求吗?

师:还可以改写成分母是多少的分数?(指名举例)

师:哦,看来可以用来做他们分母的数还真不少!那么谁来说说在改写的过程中什么发生了变化?什么没有发生变化呢?(指名口答)

师引导并强调分数的分子和分母都变大了,但分数的大小没变。是根据分数的基本性质来做的。

(3)师:其实呀刚才大家在尝试解题的过程中已经不知不觉地学会了一样新知识,就是通分。(板书:通分)像刚才大家把3/4和5/6这两个原本分母不一样的分数,分别改写成了分母一样,而又大小不变的分数,这个过程就可以说是通分。书上是怎么说的呢?我们不妨打开书本来读一读。

(4)生自学书本71页,然后指名说说什么是异分母分数?什么是同分母分数?什么是通分?(根据学生回答是板书:异分母分数——同分母分数)问:那异分母分数化成同分母分数有什么条件吗?(引导回答和原来分数相等,并板书在横线上)

(5)师:这个相同的分母我们也给它取个名字,叫公分母。(指板演题)谁来说说这几位同学各取什么为他们的公分母?(学生口答)

师:那为什么不取10或者20呢?一定要取12、24、48、?它们和原来这两个分母有什么关系?(引导回答出是原来两个分母的公倍数)

师:比较一下,用哪个数做公倍数比较简单?那12和4、6有什么关系呢?那么你们认为通分时我们一般用什么做公分母比较简单呢?(引导归纳:通分时一般用原来几个分母的最小公倍数做公分母。)

(7)小结:现在你能告诉老师完成通分需要几步呢?(学生自由说) 结合学生回答板书:1.找公分母(原分母的最小公倍数)

2.化成同分母分数。

师:那现在我们马上来试一把,先来一个简单的。

2、做练习十一第2题。

学生独立完成,展示交流。

说明:通分找公分母时,可以应用求最小公倍数的方法。

3.教学“试一试”

(1)学生独立完成在书本71页。师巡视发现问题,个别辅导。

(2)展示,全班交流。

师:你通分确定的公分母是多少?你怎样找到的?确定公分母后,应用分数的基本性质,分母乘几,分子也同时乘几。通分就要像课本上这样写出每个分数的转化过程。

三、组织练习,巩固新知

1、完成“练一练”。

学生独立完成,指名三人板演。

检查板演题,说说各是怎样找公分母的,说说要注意的地方。

2、做练习十一第3题。

(1)让学生检查通分,发现问题。

交流:哪组是对的?哪组不对,错在哪里?哪组不够简单?

指出:通分时,通常用几个分母的最小公倍数作公分母,这样既方便结果计算。

《通分》教学设计7

一,习旧引新,揭示矛盾

1,求每组数的最小公倍数,并说出是用什么方法求的 [课件1]

8和9 9和27 5和6 6和8 12和18 10和15

2,口答.[课件2]

3/4=( )/8 3/4=9/( ) 3/4=( )/24 3/4=( )/20

3,把1/3和1/5化成分母都是15的分数.[课件3]

习后提问:A,说一说该题中计算的依据是什么

B,分母15与原分母3和5是什么关系

C,由异分母分数到同分母分数,这个转化过程是依据什么来实现的

4,揭示课题:通分

二,探究新知,激发思维

认识公分母和通分的意义.

(1)教学P115 .例 3: 比较3/4和5/6的大小

① 提问:A,3/4和5/6能直接比它们的大小吗 想想用什么办法就可以比较它们的大小了

B,想一想:"相同的分母"与4和6有什么关系

② 试一试把它们化为同分母分数.

观察学生的几个算式,有没有达到把异分母分数转化为同分母分数的目的.

③ 反馈讨论:对比一下,"相同分母"选哪个数比较好 为什么

④ 小结:我们在把异分母分数转化为同分母分数时,首先选定的"相同分母"我们称为公分母.一般我们选已知分数分母的最小公倍数作它们的公分母.

板述:把异分母分数分别化成和原来分数相等的同分母分数,叫通分.

(2)我们从下面的图中看一看,通分前后的两个分数,什么发生变化了 什么没有发生变化 [课件4]

(通分并没有改变分数的大小,把异分母分数转化为和原来分数相等的同分母分数,使它们的分数单位相同了,这样就可以比较它们的大小了)

2,教学通分的方法.

(1)教学P116 .例 4: 把下面每组数的两个分数通分.

2/3和5/7 1/6和7/12

讨论:A,想想:要把这两组分数分别通分,第一步要做什么 第二步做什么

B,说说公分母21是怎样确定的 公分母12是怎样确定的

C,能说一说通分的一般方法吗

板书:通分的一般方法是:先求出原来几个分母的最小公倍数,然后把各分数分别化成用这个最小公倍数作分母的分数.

※ 把下面两组分数通分.[课件5]

9/10和8/15 3/8和5/12

D,请再说一说通分过程分几步 每步做什么

三,巩固练习,强化提高

1,说出下面每组分数的公分母.

1/4和2/3 2/3和5/6 3/8和5/6 5/12和5/48

2,P117 .1

3,P117 .3

四,课堂小结,抽象概括

什么叫通分 通分的一般方法

五,家作

P117 .2,4

板书设计: 通分的意义及方法

把异分母分数分别化成和原来分数相等的同分母分数,叫通分.

《《通分》教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式